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Figure 1. Qualitative and quantitative comparison of Gaussian Splatting methods on text reconstruction at 7K iterations. Left: On a novel
view from the Shelf dataset that features library books on a shelf, our approach STRinGS (bottom) produces sharper and readable text
as compared to vanilla 3DGS (top). Right: We quantify text reconstruction using Character Error Rate (CER) used in Optical Character
Recognition (OCR). The accompanying scatter plot presents readability (CER, lower is better) vs. training time. STRinGS achieves the

best performance both in terms of lowest error and fastest training time.

Abstract

Text as signs, labels, or instructions is a critical element
of real-world scenes as they can convey important contex-
tual information. 3D representations such as 3D Gaussian
Splatting (3DGS) struggle to preserve fine-grained text de-
tails, while achieving high visual fidelity. Small errors in
textual element reconstruction can lead to significant se-
mantic loss. We propose STRinGS, a text-aware, selective
refinement framework to address this issue for 3DGS re-
construction. Our method treats text and non-text regions
separately, refining text regions first and merging them with
non-text regions later for full-scene optimization. STRinGS
produces sharp, readable text even in challenging configu-
rations. We introduce a text readability measure OCR Char-
acter Error Rate (CER) to evaluate the efficacy on text re-
gions. STRinGS results in a 63.6% relative improvement
over 3DGS at just 7K iterations. We also introduce a cu-
rated dataset STRinGS-360 with diverse text scenarios to
evaluate text readability in 3D reconstruction. Our method
and dataset together push the boundaries of 3D scene un-
derstanding in text-rich environments, paving the way for
more robust text-aware reconstruction methods.

*Equal contribution

1. Introduction

Capturing 3D scenes from multi-view images for recon-
struction and novel view generation is an important prob-
lem with applications in mixed reality, robotics, entertain-
ment, archaeology and beyond. Early methods that used ex-
plicit geometry [22] were tedious. After this, neural scene
representations such as NeRF (Neural Radiance Fields)
and its variants [2, 20, 21] dominated the field. More re-
cently, 3D Gaussian Splatting (3DGS) [14] was proposed
that uses a geometry-neural hybrid representation. 3DGS
also achieved real-time novel-view rendering with state-of-
the-art visual fidelity.

3DGS represents scenes using 3D Gaussians and pro-
gressively optimizes them, using a coarse-to-fine strategy.
This strategy often struggles with high-frequency details
such as in fine textured regions and text present in the scene.
In particular, many real-world scenes contain text in differ-
ent ways that are useful for downstream applications. For
example, in autonomous navigation, text is essential for in-
terpreting road signs and waypoint recognition, while in
VR, clear text improves user experience, and in robotics,
it aids object identification and manipulation. Fig. | (top)
shows the low quality of text reconstructed using 3DGS.
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Can 3DGS be given a pair of reading glasses to enhance
visual quality and readability of text regions in the scene?
We address this problem in this paper. We present Selec-
tive Text Refinement in Gaussian Splatting (STRinGS), a
novel framework for improving text readability in 3DGS
reconstructions. Prior related approaches attempted to en-
hance high-frequency regions [6, 31] or improve texture de-
tail [4, 23, 29]. STRinGS identifies text regions and selec-
tively refines them following a two-phase strategy (Sec. 4):
(1) Phase 1 isolates text regions and selectively reconstructs
them; and (ii) Phase 2 performs a global scene refinement
that maintains background fidelity while preserving im-
proved text quality.

Standard 3D reconstruction datasets [1, 10, 13, 17, 18]
contain sparse or no text, limiting their use for evalu-
ating our approach. We introduce STRinGS-360, a cu-
rated dataset of five text-rich 3D scenes (Sec. 3) to ad-
dress this. Traditional image fidelity based evaluation met-
rics (e.g. PSNR) are also insufficient to evaluate text read-
ability. We introduce OCR Character Error Rate (OCR-
CER) as a text readability measure to compare rendered and
ground-truth images using a standard Optical Character Re-
congizer [5]. STRinGS achieves an average of 23.0% rel-
ative improvement in OCR-CER over standard 3DGS [14]
at 30K iterations and 63.6% relative improvement in OCR-
CER at 7K training iterations. Fig. | shows the qualitative
and quantitative improvement in text readability for a novel
view at 7K iterations of training with STRinGS.

The key contributions of our work are given below.

1. We propose STRinGS, the first framework for explicit
text refinement in 3DGS, enabling accurate and readable
text in rendered novel views.

2. We introduce STRinGS-360, a curated benchmark to
evaluate 3D reconstruction methods on text-rich scenes
and propose OCR-CER to quantify text readability.

3. We demonstrate that STRinGS enables superior text
readability without compromising image quality com-
pared to existing high-frequency enhancement or den-
sification strategies. Furthermore, this is achieved in
early stages of training, a critical requirement for time-
constrained applications.

2. Related Work

Traditional 3D reconstruction uses Structure-from-Motion
(SfM) [25] and Multi-View Stereo (MVS) [26] pipelines
to recover camera poses and sparse point clouds from in-
put images. Neural Radiance Fields (NeRFs) [9, 20] from
the last few years are a paradigm shift as they represent
scenes as volumetric fields using MLPs, enabling photo-
realistic novel view synthesis at the cost of slow train-
ing. While methods like Instant-NGP [21] improve ren-
dering speed, real-time rendering remains challenging. 3D
Gaussian Splatting (3DGS) [14] addresses this by adopting

anisotropic 3D Gaussians to represent 3D scenes that enable
fast differentiable rasterization. However, 3DGS struggles
to preserve high-frequency details, as the coarse-to-fine op-
timization favors global fidelity over local structure.

3DGS improvements. Recent works extend 3DGS to im-
prove overall scene reconstruction quality and address these
limitations. Mip-Splatting [32] tackles aliasing and scale
inconsistencies by introducing filters that make 3DGS more
robust across zoom levels. 3DGS-MCMC [15] introduces a
sampling-based formulation to improve Gaussian initializa-
tion, while AbsGS [31] addresses the over-reconstruction
of fine structures by revising the gradient-based densifica-
tion strategy. Mini-Splatting [7, 8] proposes guided den-
sification and simplification pipelines that maintain scene
fidelity with fewer primitives. Efficient Density Control
(EDC) [6] is a plug-and-play module that enhances various
3DGS variants [7, 19, 31] by incorporating targeted pruning
and splitting operations to improve scene fidelity and effi-
ciency. Several other approaches densify Gaussians across
the scene based on visibility, reconstruction error, or color
cues to improve fidelity in detail-rich areas [3, 16, 24, 34].

Extensions to texture. To address the limited expressivity
of standard Gaussians, texture-based extensions have also
emerged. GSTex [23] and HDGS [27] augment 2D Gaus-
sian splatting [11] by attaching learnable texture maps to
each primitive. Texture-GS [29] and Textured Gaussians [4]
extend this paradigm to 3DGS, enabling better disentangle-
ment of geometry and appearance. Textured-GS [12] fur-
ther enhances this with spherical harmonics for spatially-
varying color and opacity. Billboard Splatting [28] proposes
a new representation using textured planar primitives, offer-
ing improved quality at the cost of increased training time.

STRinGS focuses on text. While these works enhance
overall visual fidelity, they do not explicitly target seman-
tic regions such as text, which are vital for downstream
applications. In contrast, our method introduces selective
refinement for text regions in 3DGS. By decoupling the op-
timization of text and non-text regions, STRinGS achieves
sharper and more readable textual content with fewer train-
ing iterations and without degrading overall scene quality.

3. STRinGS-360 Dataset

Existing 3D scene datasets often lack semantically mean-
ingful text, i.e., text that provides information relevant to
the scene, on foreground objects. When present, text is typ-
ically sparse and relegated to the background, making these
datasets unsuitable for evaluating methods that target text-
specific refinement. Moreover, datasets such as DL3DV-
10K Benchmark [18] offer only flat or panned views rather
than full 360° coverage, restricting the ability to assess text
reconstruction across diverse viewpoints.

To address these limitations, we introduce STRinGS-
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Figure 2. Overview of the scenes in our STRinGS-360 dataset.
Each scene contains semantically meaningful text elements:
(A) Extinguisher, (B) Books, (C) Chemicals, (D) Globe, and
(E) Shelf. The dataset is designed to evaluate text reconstruction
performance under diverse layouts and text orientations.

360, a curated dataset of five indoor scenes designed
to benchmark text readability in 3D Gaussian Splatting
(Fig. 2). Each scene centers on a single or a set of object(s)
containing dense, semantically meaningful text exhibiting
several challenges. A. Extinguisher features instructional
text on a curved cylindrical surface; B. Books contains flat,
densely packed book titles with author names; C. Chemi-
cals presents chemical compositions on labeled bottles in a
laboratory shelf; D. Globe includes geographical names on
a spherical surface; and E. Shelf shows stacks of academic
books in a structured and sometimes occluded setting, with
repeated titles commonly found in libraries. These scenes
span flat, cylindrical, and spherical configurations and of-
fer a diverse and realistic benchmark for evaluating fine-
grained textual fidelity in 3D reconstructions.

4. STRinGS Methodology

We present an overview of STRinGS in Fig. 3. We begin
with preprocessing: SfM and text segmentation (Sec. 4.1)
followed by segmenting text regions in 3D (Sec. 4.2). Next,
we propose our two-phase optimization that selectively re-
fines text regions (Sec. 4.3) followed by integration with
non-text regions and full scene optimization (Sec. 4.4).

4.1. Preprocessing

COLMAP SfM. Given n input images Z = {[,...,I,}
of a static scene captured from different viewpoints, 3DGS
begins by extracting geometric information required for ini-
tialization. Specifically, we obtain a sparse 3D point cloud
of m points P = {Py,...,P,,}, camera poses associated
with the images C = {C1, ..., C,}, and the camera intrin-
sics K using the COLMAP pipeline [25, 26]. Addition-
ally, for each point P;, COLMAP provides a visibility set
V; C{1,...,n} indexing the subset of images in which the
point is observed. We denote the collection of these visibil-
itysetsas V = {V1,..., V. }.

Text segmentation. To identify and isolate textual regions

Algorithm 1: Text Segmentation in 3D

Input: Point cloud P; camera intrinsics K'; camera
poses C; text masks M; visibility sets V;
visibility threshold 7

Output: Preyi, Pon-text

Prext < 0

for each point P; € P, where i =1 to m do
count < 0
for each image index j € V; do
// Perspective Projection
U;j < W(K, Cj, Pl)
if Mj (uij) = 1 then
L count <+ count + 1

if count > 7 then
L Prext < Prext U {PZ}

Pron-text < P \ Prext
Return Piey, Pron-text

in the undistorted images output by COLMAP, we em-
ploy Hi-SAM [30], a model capable of segmenting text
at multiple scales and orientations. We refer to the bi-
nary mask for image I; as M;, and the set of all masks
as M = {My,...,M,}.

4.2. Text Segmentation in 3D

To enable text-aware reconstruction in our pipeline, we first
identify the subset of 3D points that correspond to text re-
gions in the scene. This is done by projecting each 3D point
(from COLMAP) into all images where it is visible, and
checking whether its 2D projection falls inside the corre-
sponding Hi-SAM text mask. A point is classified as a text
point if it lies within the text region in at least 7 images. In
our method, we set the visibility threshold 7 = 1. The set
of text points is denoted as Py C P, and its complement
as Poontext = P\ Prext- The pseudo-code for this process is
provided in Algorithm 1.

The Gaussians used in 3DGS are initialized directly from
the sparse point cloud P, with each point providing the 3D
location (z,y, z) of a Gaussian. Leveraging the text/non-
text partitioning from above, we define Gy, and Gyon_text
as the initial sets of Gaussians corresponding to Py and
Phron-text respectively. These subsets serve as the basis of our
two-phase training strategy described next.

4.3. Phase 1: Selective Text Reconstruction

We start GS training using the text Gaussians Gy, obtained
through the 3D text segmentation process above. This phase
runs for T} iterations (3K), and optimization is performed
on the subset of images with non-empty text masks.

Densification of text Gaussians. Since the initialization
is based on a sparse point cloud, high-frequency structures
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Figure 3. STRinGS overview. Given n input images, we use COLMAP to obtain a point cloud P and undistorted images, which are
passed to Hi-SAM [30] to obtain text masks M. P and M are passed to the Text Segmentation in 3D module (Sec. 4.2, Algorithm 1) to
obtain partitioned text and non-text point clouds. These are processed through a two-phase pipeline. In phase 1 (Sec. 4.3), we perform
targeted densification and reconstruction of text Gaussians. In phase 2 (Sec. 4.4), we perform full scene refinement, where text and non-text
Gaussians are optimized with distinct learning strategies, enabling targeted enhancement of text without compromising scene quality. The
final output is a text-refined Gaussian Splat representation with enhanced text readability while preserving overall scene fidelity.

(text) may be underrepresented, especially in cases where
the number of viewpoints observing the text is small. To
address this, we adopt a visibility-based densification strat-
egy at the start of phase 1. Note, this is a one-time densifi-
cation in addition to the standard densification process used
in 3DGS. Specifically, the number of duplicates N; for each
Gaussian g; € Gy, is inversely proportional to its visibility:

o 1/¢; — ming(1/ck)
Ni = {maxk(l/ck) — ming(1/cx)

¢; = |V;] is the visibility count of point P; and correspond-
ing Gaussian g;. The parameter Ny,,x defines the maximum
densification factor, chosen to be between 15-25 based on
the density of text in the scene.

We apply the densify-and-split strategy to each Gaus-
sian, guided by its densification factor. This results in mul-
tiple smaller Gaussians at slightly perturbed positions that
cover the same volume, thereby enabling an efficient repre-
sentation of text. The result of this process is an augmented
set of text Gaussians, denoted as G3%¢. The necessity and

text
effectiveness of this densification are discussed in Sec. 5.3.

- (Nmax—1) + 1] GD!

Text region loss. To ensure that the optimization focuses on
text regions, we use the segmented text masks to modify the
loss function. Specifically, for an image I; and its rendered
counterpart I;, the reconstruction loss is:

LY = ||I; @ M; — R; @ M| . )

where © denotes element-wise multiplication and M is the
binary text mask. This replaces the standard photometric
loss formulation in 3DGS that combines £, and D-SSIM
terms over the entire image [14].

Locking position parameters. 3DGS typically employs
a coarse-to-fine optimization schedule where the position

parameters of Gaussians are updated with relatively high
learning rates (LRs) at the start. This often causes them to
drift away from high-frequency regions such as text. As
our text Gaussians are initialized at text regions, we lock
them in position by setting their position LR to zero, while
allowing other parameters to be updated.

The output of phase 1 is a refined set of text Gaussians,

denoted Gfi"ed used in phase 2 for full scene optimization.

4.4. Phase 2: Full Scene Refinement

We now focus on jointly optimizing both text and non-text
regions of the scene. The refined text Gaussians Gfied are
combined with initial non-text Gaussians Gyon-text Obtained
from 3D text segmentation process. After 77 (3K) iterations
of phase 1, phase 2 runs up to 75 (30K) iterations.

In this phase of training, we maintain the same loss func-

tion as in 3DGS [14], including the D-SSIM component, to
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Figure 4. Learning rate (LR) of the position parameter for Gaus-
sians in STRinGS (see Eq. (3)). Left: Learning rate scaling fac-
tor 7, (t) for text and non-text Gaussians. Right: Effective LR
obtained by modulating a shifted base exponential decay sched-
ule nopi(t) from 3DGS with these factors. «=0.5, §=0.0005,

=15000. Note, phase 1 sets the position learning rate of Giex
to 0 while Gnon-text 1S not optimized. In phase 2, we introduce dif-
ferentiated learning for text and non-text content.



OCR-CER | TandT DL3DV-10K STRinGS-360 Training Time TandT DL3DV-10K STRinGS-360
7K 30K 7K 30K 7K 30K (in minutes) | 7K 30K 7K 30K 7K 30K
3DGS siGerapH ™23 0.209 0.121 0.392 0.157 0.736 0.148 3DGS siGGRAPH 23 2.0 13.8 2.8 15.1 2.5 17.2
Mip-Splatting cver24 0.222 0.125 0.392 0.149 0.748 0.129 Mip-Splatting cver24 34 208 63 304 5.7 31.7
3DGS-MCMC newrips24 0272 0.120 0.511 0.142 0.927 0.110 3DGS-MCMC newrips s 3.1 19.6 5.2 28.3 5.6 34.0
AbsGS acvivv24 0.249 0.137 0411 0.160 0.768 0.143 AbsGS Acvivvi4 2.6 12.7 5.3 20.7 5.4 22.5
EDC-AbsGS arxivos 0.142 0.118 0.239 0.162 0.328 0.116 EDC-AbsGS arxivos 2.8 12.7 6.0 222 55 23.2
STRinGS (Ours) 0.122 0.099 0.187 0.123 0.177 0.106 STRinGS (Ours) 1.1 9.6 2.1 11.4 1.9 12.6

Table 1. OCR-based Character Error Rate (CER |) on rendered
images at 7K and 30K training iterations averaged over all scenes
in the dataset. Lower CER indicates better text readability. Red,
orange, and yellow highlights indicate the first, second, and third
best performing technique.

ensure full scene refinement. We also follow the standard
procedures for densification, splitting, and cloning Gaus-
sians as 3DGS.

Modulating position learning rates. A key concern is pre-
serving the quality of G'fi"d that may drift from their po-
sition if updated indiscriminately to minimize global pho-
tometric loss. To address this, we apply a text region de-
pendent LR for the positions of text and non-text Gaussians
separately.

For Giexi, We propose an increasing LR factor as a sig-
moid function. This results in conservative early updates
that preserve existing structure while providing flexibility
later. Conversely, for Gpon-text, We apply a constant multi-
plier a to ensure compatibility with the lowered LR for Giey
and avoid destabilizing updates.

The region-specific LR factor 7,.(¢) for the position of a
Gaussian g at iteration ¢ € [T7, T5] is:

« H refine
() = {Hew EEGET g
(63 ifg e Gron-text -

Next, let npase (£) be the LR schedule adopted by vanilla
3DGS. We shift this by 7 iterations to obtain 7y (t). Then,
the effective LR used to update the position of each Gaus-
sian is Neffective (&, 1) = N (t) - Nope(t), and is illustrated in
Fig. 4. We explain hyperparameter choices in Appendix A.

Overall, STRinGS’s hybrid strategy enables targeted and
region-aware optimization, ensuring sharp and readable text
while preserving overall scene quality.

5. Experiments and Results

Following standard protocol in the 3DGS literature [14], ev-
ery 8" image is held out as an evaluation view to assess
novel view synthesis performance. Each scene is trained
for T (30K) iterations. To evaluate results on early text
reconstruction, we also report results at 7K iterations. All
experiments are conducted on an Nvidia RTX 3090 Ti GPU
with 24GB VRAM.

The pipeline involves running COLMAP to obtain the
sparse point cloud, camera poses, and undistorted images.

Table 2. Training time in minutes at 7K and 30K training itera-
tions, averaged over all scenes in the dataset.

The undistorted images are passed to the Hi-SAM-L [30]
model which outputs tight polygonal text masks. These are
dilated using a circular kernel with a diameter equal to 5%
of the image width, thereby spanning the visual footprint of
a text region, which includes the text strokes and immedi-
ate background context. This is followed by the two-stage
training procedure outlined in Sec. 4.

5.1. OCR-based Evaluation

3D reconstruction quality is typically measured using
image-based metrics such as PSNR, SSIM, and LPIPS [33],
which quantify similarity between rendered and ground-
truth images. They are computed by averaging pixel-level
or perceptual differences over entire images, often domi-
nated by background non-textual regions. While effective
at assessing global appearance, these metrics fall short in
evaluating the semantic fidelity of reconstructed text.

In our scenes, even if text occupies a small fraction of the
images, it has high semantic importance. Character-level
distortions, misalignments, or partial blurring may severely
impair text legibility, however, barely affects PSNR or
SSIM scores. To address this limitation, we introduce
an OCR-based evaluation score that measures the qual-
ity of text reconstruction. Specifically, we run Google
OCR API [5] on the rendered views and the correspond-
ing ground-truth images. For each evaluation image, we
compute the Character Error Rate (CER): the normalized
Levenshtein distance between recognized and ground-truth
text, using a recall-based approach that penalizes missing
and mismatched ground-truth characters. OCR-CER re-
flects how well the reconstructed image retains readable and
accurate textual information. The CER scores are aggre-
gated across all evaluation views within each scene. Addi-
tional details are provided in Appendix C.

5.2. Comparison with Existing Works

Baselines. We compare against vanilla 3DGS [14] and
other recent methods. While there are no existing methods
targeting text reconstruction, Mip-Splatting [32], 3DGS-
MCMC [15], AbsGS[31], and EDC-AbsGS [6] ! serve as
strong baselines as they refine the overall scene.

IBy EDC-AbsGS, we refer to this implementation https: //
github.com/XiaoBin2001/EDC linked in their arXiv preprint.
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Figure 5. Qualitative comparison of different methods at 7K training iterations on scenes from the DL3DV-10K Benchmark [18] (rows
1, 2) and our STRinGS-360 (rows 3-5) datasets. While existing methods struggle to reconstruct text accurately at this early stage, our
STRinGS framework produces significantly sharper and more legible text regions. (Best seen on screen)

Datasets. We evaluate all methods on a diverse set of
14 scenes drawn from existing benchmarks and STRinGS-
360. This includes 2 scenes from the Tanks and Temples
dataset [17], 7 selected scenes from the DLL3DV-10k Bench-
mark [18] that feature varying amounts of textual content,
and 5 scenes from our STRinGS-360 dataset, consisting of
sharp, dense, and semantically meaningful text.

Text reconstruction results. We compare model perfor-
mance at two stages: 7K and 30K iterations. Tab. | shows
that STRinGS achieves the lowest OCR-CER, with a big
gap at 7K iterations. The relative improvements, averaged
over all datasets are: 63.6% 3DGS, 64.3% Mip-Splatting,
71.6% 3DGS-MCMC, 66.0% AbsGS, and 31.4% EDC-
AbsGS. Fig. 5 visualizes the noticeably sharper and read-
able text at 7K iterations for various scenes. STRinGS does
especially well on reconstructing small text such as “ac-
etaminophen” (row 2), “product code 18060 (row 3), or
names on the globe such as “Minneapolis” (row 4).

While other methods bridge the gap at 30K iterations,
STRinGS still outperforms them with a relative improve-
ment in OCR-CER scores: 23.0% 3DGS, 18.6% Mip-
Splatting, 11.8% 3DGS-MCMC, 25.4% AbsGS, and 17.2%
EDC-AbsGS. A few examples are visualized in Fig. 6.

STRinGS is most effective when text regions contain few

points at initialization or when the text is visible in a small
subset (< 5%) of images, where other methods tend to fail.
Importantly, this targeted text refinement results in compa-
rable overall scene quality and fewer Gaussians (Tab. 4).
What distinguishes our method from others is its ability to
accurately reconstruct small text, whereas other methods
can already handle large text reasonably well, as detailed in
Appendix D.2. We also demonstrate the effectiveness of our
method on multilingual text refinement in Appendix D.1.

5.3. Ablations and Key Highlights

Effect of text densification. To address sparse points at ini-
tialization in text regions leading to under reconstruction,
we introduce a targeted text densification step in phase 1
(Sec. 4.3). As illustrated in Fig. 7, the benefits of text-aware
densification are evident. Vanilla 3DGS fails to reconstruct
the text even after 30K iterations, while STRinGS with-
out text densification also fails to reconstruct the text. Our
approach with densification successfully reconstructs sharp
and accurate text at 30K iterations while clearly showing a
few letters even at earlier stages of training. Results show-
ing the effect of text densification are presented in Tab. 3.
We see consistent improvements in OCR-CER indicating
better text reconstruction across all datasets.
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Figure 6. Qualitative comparison of different methods at 30K training iterations on scenes from DL3DV-10K Benchmark [18]. STRinGS
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consistently preserves text clarity, even in visually challenging regions where other methods miss fine textual details. (Best seen on screen)

Effect of position LR of Gaussians. To assess the impact
of the position LR during phase 1 (Sec. 4.3), we evaluate the
outputs at the end of this phase using OCR-CER. As shown
in Fig. 9, using a non-zero LR for the positions of Gaus-
sians leads to significant degradation in text reconstruction.
This is especially important in our setting, where Gaussians
are already densely placed over text regions through explicit
densification. By setting the position LR to zero, we freeze
their locations, allowing the optimization of other param-
eters such as scale, opacity, and spherical harmonic coef-
ficients leading to sharper text reconstruction. Results in
Tab. 3 show that zero position LR is crucial for improving
text quality from the early stages (3K iterations of phase 1)
indicated by the significantly improved OCR-CER.

Training speed. Our method achieves better text
reconstruction quality with significantly lower training
time, compared to existing densification-based approaches
(Tab. 2). Densification in standard 3DGS relies on large
positional gradients to dynamically add Gaussians during
training, which introduces significant computational over-
head. In contrast, STRinGS sets the position LR to zero in
the first phase and keeps it lower than 3DGS in the second,
effectively limiting unnecessary densification. Since we ex-
plicitly add Gaussians in text regions at the start of phase 1,
we avoid the need for extensive gradient-driven densifica-
tion, leading to faster and more efficient training.

While EDC-AbsGS is the strongest baseline in terms of
CER, compared to STRinGS, it requires 2.8 X training time

Dataset TandT DL3DV-10K STRinGS-360

Effect of text densification
OCR-CER | w/o Ours w/o Ours w/o Ours
(7K iterations) 0.196 0.122 0.316 0.187 0.437 0.177

Effect of zero position LR of Gaussians
OCR-CER | w/o  Ours w/o Ours w/o Ours
(3K iterations) 0.342 0.289 0.618 0.278 0.948 0.347

Table 3. Ablations. The effect of text densification and the ef-
fect of zero position LR of Gaussians in phase 1. The OCR-CER
values, averaged over all scenes in the datasets demonstrate the
necessity of both components for accurate text reconstruction.

for 7K iterations and 1.7 x for 30K iterations. On the other
hand, 3DGS is closest to STRinGS in training time (only
1.4x at both 7K and 30K), but performs significantly worse
in text reconstruction quality (Tab. 1). These results high-
light that STRinGS performs the best in terms of both ef-
ficiency and accuracy. The trade-off between OCR-CER
and training time across methods is visualized in Fig. |. A
detailed breakdown of the time required for preprocessing
(COLMAP and text segmentation) and training (phases 1
and 2) is provided in Appendix D.3.

Early text reconstruction. We demonstrate the evolution
of text reconstruction quality over training iterations on the
Extinguisher scene from our dataset. Our method achieves
noticeably better text reconstruction at early stages (3K and
7K iterations) compared to vanilla 3DGS (Fig. 8). The
accompanying plot illustrates the evolution of OCR-CER
across iterations, showing that our method reconstructs text
accurately much earlier.

No Text Densification
OCR-CER: 0.666

3DGS STRinGS (Ours)
OCR-CER: 0.666

e W B
\ ' \

OCR-CER: 0.250

7K Iterations

ﬂllns&

OCR-CER: 0.666

P SN
IS
Y
:Jﬁl
A
\

e 2 6

OCR-CER: 0.500

30K Iterations

Figure 7. Effect of text densification on a scene from the
Tanks&Temples [17] dataset. Left: Vanilla 3DGS fails to re-
construct readable text even after 30k iterations, resulting in high
OCR-CER of 0.666. Middle: STRinGS (Ours) with text densi-
fication achieves sharp and semantically meaningful text as early
as 7K iterations which improves further at 30K iterations (0.083
CER). Right: Without text densification, our method struggles to
produce accurate and legible text, demonstrating the importance
of targeted densification of text regions.



Tanks&Temples

DL3DV-10K Benchmark

STRinGS-360 (Ours)

Method

PSNRT SSIMt LPIPS| Points) PSNRfT SSIMt LPIPS| Points) PSNRfT SSIMt LPIPS, Points)
3DGS siGGraPIT23 2373 0.8524 0.1692  1576K 3020 09348 0.1456  1175K  28.85 09126 0.2107 1391K
Mip-Splatting cver 24 23.81 0.8596  0.1563  2366K 3047 09390 0.1329 1610K 28.80 09142 0.2012 1875K
3DGS-MCMC newres24 2443 0.7688 = 0.1508  1550K 3046 09390 0.1394 1182K = 29.85 09234 0.1971 1388K
AbsGS Acvmivros 23.64 0.8526  0.1616 1297K 30.18 0.9360  0.1368 874K 28.77 09111  0.2044 1240K
EDC-AbsGS arxivos 23773  0.8595 0.1557 1382K 3045  0.9400 0.1321 857K 2930 09183 0.1992  1041K
STRinGS (Ours) 23.88 0.8513 0.1767 1354K 30.14  0.9338  0.1477 918K 29.00 09138 0.2166 965K

Table 4. Comparison of reconstruction quality and number of Gaussians (Points) at 30K iterations across three datasets:

Tanks&Temples [17], DL3DV-10K [18], and STRinGS-360. Our method achieves comparable PSNR, SSIM, and LPIPS scores, indi-
cating no degradation in overall scene quality, while requiring slightly lesser Points especially in text-rich scenes (STRinGS-360 dataset).

3K iterations 7K iterations

-e- 3DGS
—a— STRinGS (Ours)

0.8

OCR-CER |

15K iterations 30K iterations

0
3K 7K 15K

Iterations

30K

Figure 8. Text reconstruction across training iterations on the Extinguisher scene from our STRinGS-360 dataset. STRinGS achieves
clearer and more accurate text reconstruction earlier than 3DGS, as reflected in the plot for OCR-CER of the scene over iterations.

5.4. Discussion

Applications. STRinGS is well-suited for use cases where
both quality and efficiency are critical. For example, au-
tonomous navigation requires early recovery of readable
text for tasks like interpreting signs/directions and waypoint
recognition. In robotics, clear reconstruction of text as-
sists in scene understanding and labeled object identifica-
tion. In AR/VR environments, user experience is enhanced
by good quality of reconstructed text. Further, STRinGS
may prove valuable in cultural heritage applications, where
reconstructing inscriptions such as ancient stone carvings,
temple wall engravings, or historical monument plaques as
3D models can aid archival and restoration efforts.

Limitations. STRinGS uses Hi-SAM for 2D text segmenta-
tion that introduces computational overhead during prepro-
cessing and may miss text in cluttered scenes. However, this
can be swapped out for future models that improve text seg-

OCR-CER1.0 OCR-CER 0.0

Non-Zero Position LR

Groun:i Truth

Zero Position LR

Figure 9. Effect of position learning rate at the end of phase 1 (3K
iterations) on a scene from the Tanks&Temples [17] dataset. A
non-zero LR causes Gaussians to drift, leading to poor text recon-
struction (CER = 1.0). Instead, freezing their positions (zero LR)
preserves spatial alignment, enabling text readability (CER = 0.0).

mentation. Future work could focus on reducing Hi-SAM’s
computational overhead, for instance by performing 3D text
segmentation on only a strategically chosen subset of im-
ages rather than the full set. Additionally, STRinGS fails
when text in input images is unreadable due to low resolu-
tion, making reconstruction inherently limited.

6. Conclusion

We introduced STRinGS, a novel text-aware refinement
framework that explicitly focuses on reconstructing sharp,
clear and readable text. By treating text and non-text re-
gions separately, our two-phase optimization enables early
recovery of textual content. Extensive evaluations across
diverse text-rich scenes demonstrated that STRinGS consis-
tently outperforms baselines, achieving significantly lower
OCR-based Character Error Rates, particularly at early it-
erations, highlighting its potential for time-sensitive appli-
cations. We also proposed STRinGS-360, a curated dataset
specifically designed for evaluating text readability in 3D
reconstructions. By using OCR-CER as a measure for text
readability, we quantitatively validated the improvements
offered by our method over vanilla 3DGS and its variants.
In summary, STRinGS establishes a new direction for text-
aware 3D scene understanding, highlighting the importance
of semantic detail preservation in 3D scene reconstruction.
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STRinGS: Selective Text Refinement in Gaussian Splatting
Supplementary Material

A. Experimental Design Choices

Segmentation model and mask dilation. We employ Hi-
SAM for image-level text segmentation due to its strong
performance in detecting multi-scale, arbitrarily oriented
scene text. Hi-SAM produces tight polygonal masks, which
helps in precisely isolating text-bearing regions from the
background.

To compensate for over-constraining effects of tight Hi-
SAM masks, we apply morphological dilation. This adjust-
ment is motivated by the observation that a text region’s
visual footprint includes not only the strokes themselves
but also immediate background context, which is often cap-
tured by nearby Gaussians. Dilation improves performance
in both 3D text segmentation and mask-based supervision
in phase 1.

Our framework remains compatible with any text seg-
mentation model capable of generating binary text masks.
Since, Hi-SAM is computationally expensive, it can be re-
placed by faster models, at the cost of text segmentation
quality. Additionally, since consecutive frames contain suf-
ficient overlap between text regions and we set the visibility
threshold to 1, text masks can be obtained only for a subset
of images instead of the full set. Based on these, the points
in 3D can be segmented into text and non-text regions, re-
ducing the text segmentation overload.

Visibility threshold in 3D text segmentation. Each 3D
point reconstructed by COLMAP includes a visibility set
indicating the subset of images in which it appears. For
3D text segmentation, we project points onto these visible
images and check for overlap with the corresponding text
masks. A point is marked as text if it lies within a mask in
at least 7 views, with 7 set to 1 in all our experiments.

This low threshold is essential as certain textual elements
may be visible only from one or two viewpoints due to oc-
clusions, viewing angle, or lighting. A higher value of 7
could result in such points being misclassified as non-text,
especially in sparsely observed or cluttered scenes. Setting
7 = 1 ensures that points corresponding to text regions are
not misclassified.

Densification parameters. Since COLMAP-based initial-
ization is sparse and often under-samples fine structures like
text, we adopt a inverse visibility-based densification strat-
egy during phase 1. Each text-associated point is duplicated
N; times, with the duplication factor constrained between 1
and a scene-specific Nyax-

The maximum densification factor N, is selected
adaptively based on the overall textual content in the scene.
For text-sparse scenes, we set Ny to 15 or 20 to ensure

adequate coverage despite fewer text points relative to non-
text points. For text-rich environments such as those in our
STRinGS-360 dataset, we set Npn,x = 25 to capture the
dense and overlapping text structures more accurately. This
adaptive strategy improves reconstruction quality across di-
verse scene types without incurring significant computa-
tional overhead.

Text region loss in phase 1. During phase 1, optimization
is restricted to text Gaussians and masked text regions. As
described in phase 1, we use an £; loss restricted to text
masks and omit the D-SSIM component by setting Ap_ssiv
to O (default value of 0.2 in 3DGS). D-SSIM, being a per-
ceptual metric over spatial patches, is unreliable when su-
pervision is confined to sparse or irregular regions such
as text boundaries. The L£; loss ensures stable and inter-
pretable gradients during refinement.

Modulating positional learning rates in phase 2. Since
non-text Gaussians are initialized at the beginning of this
phase, to align the learning rates of their non-positional pa-
rameters like opacity, scale or spherical harmonics, with
similar learning rates used in vanilla 3DGS, we shift the
base learning rate schedule 7y, (t) by T} iterations. This
ensures that non-text Gaussians’ parameters are learned
consistently, as if they had been optimized with a higher
learning rate just after initialization, similar to vanilla
3DGS.

Since we want to maintain a lower learning rate for text
Gaussians to preserve their well-initialized positions, and at
the same time ensure compatibility with the learning rate for
non-text Gaussians, we set « = 0.5. This constant learning
rate factor for the positions of non-text Gaussians ensures
that the updates for non-text regions do not conflict with
the more conservative updates for text regions, particularly
at the boundaries where overlapping Gaussians may receive
differing gradients. Experimental results show that a = 0.5
provides an optimal balance, stabilizing non-text regions
without impeding the refinement of text regions. The same
value of « for both the constant learning rate factor for non-
text Gaussians and the sigmoid cap for text Gaussians en-
sures that, in the later stages of training, text and non-text
Gaussians are updated with comparable learning rates, en-
abling a unified refinement of the overall scene.

For text Gaussians, we introduce a sigmoid-based posi-
tional learning rate schedule to gradually change their learn-
ing rate over time. The steepness of this sigmoid curve
is controlled by the parameter 5 = 0.0005, which deter-
mines how smoothly the learning rate changes as training
progresses. A small value for 3 ensures that the transition
is gradual, allowing for conservative updates in the early



STRinGS-360 ISO f-number Focal Length Shutter Speed Num Images Width (px) Height (px)

Extinguisher 2000 /10 30 mm
Books 800 /9 31 mm
Chemicals 2500 /8 23 mm
Globe 1000 /8 31 mm
Shelf 800 /9 31 mm

1/15 s 109 1000 1500
1/10's 134 1500 1000
1730 s 117 1500 1000
1/30's 205 1500 1000
1/10 s 167 1500 1000

Table 5. Metadata for the STRinGS-360 dataset containing text-rich scenes.

stages to preserve the geometry of the text regions. We ob-
serve that varying 8 has negligible impact on overall per-
formance, but a smooth increase is essential to avoid abrupt
changes that could destabilize the positions of text Gaus-
sians. The parameter v = 15000 was chosen based on ex-
perimental results, where we found that allowing the po-
sitional learning rate to remain low until this point helps
preserve the initial structure of the text Gaussians.

Training efficiency. All experiments were conducted using
the accelerated 3DGS-Accel framework for faster training
and GPU efficiency. All reported metrics, including training
time are measured under this setup.

B. STRinGS-360 Dataset Details

All scenes in the STRinGS-360 dataset were captured using
a Nikon D5300 DSLR camera equipped with an 18-55mm
lens. To ensure photometric consistency and maintain high
reconstruction quality, we fixed the camera to use the SRGB
IEC61966-2.1 color profile and captured all images under
manual exposure, manual white balance, and manual focus.
These manual settings were crucial to avoid photometric in-
consistency across frames, which can negatively impact 3D
reconstruction methods. Scene-specific values for ISO, f-
number, focal length, shutter speed, and resolution are pro-
vided in Tab. 5.

Each scene in STRinGS-360 was captured by moving
around a central object, collecting images from all an-
gles to ensure full 360-degree coverage. This stands in
contrast to many existing datasets such as DL3DV-10K
Benchmark, where scenes are often recorded with limited
back-and-forth or partial panning trajectories. Such cap-
ture styles are insufficient for evaluating text reconstruction,
especially when text spans curved or occluded surfaces.
Moreover, existing datasets rarely feature foreground ob-
jects with dense, semantically meaningful text. STRinGS-
360 addresses this gap by providing text-rich scenes with
comprehensive multi-view coverage, enabling more realis-
tic and rigorous evaluation of text fidelity in 3D reconstruc-
tion.

The dataset comprises five indoor scenes selected for
their diverse geometric and textual characteristics. Each
scene contains semantically meaningful text on a central

object, designed to test different aspects of text fidelity in
3D reconstruction. Extinguisher includes instructional text
wrapped around a cylindrical surface, introducing perspec-
tive distortion and non-planar geometry. Books presents
a flat arrangement of books densely populated with titles
and author names, featuring occlusions. Chemicals con-
tains high-frequency chemical labels on chemical bottles
including glossy bottle surfaces. Globe captures a spherical
surface densely annotated with geographical labels, testing
the model’s ability to preserve curved text across changing
orientations. Shelf includes repeated textual patterns and
occlusions in a realistic setting, resembling a complex aca-
demic bookshelf.

Text is particularly sensitive to distortions, misalign-
ments, and blurring, all of which are common challeng-
ing modes in existing GS pipelines. Unlike geometric de-
tails or surface textures, even small inaccuracies in letter
shapes can lead to substantial semantic loss. By focusing
on fine-grained, multi-view text capture in challenging en-
vironments, STRinGS-360 provides a valuable benchmark
for evaluating and advancing text aware 3D reconstruction
methods.

C. OCR-Based Evaluation Details

To assess the textual fidelity of reconstructed scenes, we
propose an OCR-based evaluation score that compares text
recognized from reconstructed images against ground-truth
captures. Both rendered outputs and ground-truth images
are preprocessed using binary masks generated via Hi-
SAM, which isolate text-bearing regions and suppress back-
ground clutter. This masking significantly reduces false
positive detections by the OCR engine.

We employ Google Cloud Vision OCR for text recogni-
tion. Each detected text instance is associated with an ori-
ented bounding box. To align predictions between ground-
truth and renderings, we construct a bipartite graph in
which nodes correspond to OCR-detected text regions in
either image, and edges are added between regions with
an Intersection-over-Union (IoU) exceeding a threshold (0.1
in our experiments). Connected components of this graph
represent matched groups of text regions that are spatially
aligned. This approach enables robust 1-to-N and N-to-1



matching between text blocks (e.g. when a single word in
the ground truth is split into multiple detections in the ren-
dered image). In contrast to traditional matching strategies
like the Hungarian algorithm, which enforce strict one-to-
one assignments based on a global cost matrix, our method
accommodates more flexible and realistic many-to-many
correspondences that often occurs in scene text OCR.

For each matched group, we compute the Character Er-
ror Rate (CER) using Levenshtein distance, which measures
the minimum number of insertions, deletions, and substi-
tutions required to transform one string into another. The
text strings in each group are formed by concatenating the
OCR results after sorting them by their spatial layout (ei-
ther horizontally or vertically, based on the dominant axis),
to approximate reading order.

The final CER scores are obtained by aggregating
character-level errors across all matched groups, normal-
ized by the total number of characters in the ground-truth
regions. Importantly, we adopt a recall-oriented evalua-
tion protocol, where unmatched OCR predictions in the ren-
dered image (false positives) are excluded from error com-
putation. This reflects a conservative evaluation focused on
text retention, penalizing missing or corrupted text from the
ground truth, while tolerating false predictions that do not
interfere with readability. This is particularly important for
reconstruction settings where hallucinated background arti-
facts or fragmentary text are common, and over-penalizing
such cases could misrepresent actual recognition quality.

D. Additional Results

D.1. Generalization to Multilingual Text

Our method generalizes to scenes containing text in any
language, owing to the robustness of Hi-SAM in generat-
ing accurate text segmentation masks across diverse scripts.
While quantitative evaluation is limited by the reliability
of multi-language OCR tools, qualitative results on a scene
from the DL3DV-10K Benchmark dataset at 7K training it-
erations (Fig. 10) demonstrate that our approach effectively
reconstructs text across different scripts.

D.2. OCR-CER and Text Size

Small text in rendered images plays a critical role in OCR-
CER scores, as its reconstruction is particularly challeng-
ing. To investigate this, we analyze OCR-CER results strat-
ified by text size. Following Google OCR outputs, the size
of a text instance is defined as the height of the shorter side
of its bounding box, and not the area as it is influenced by
word length. We categorize text into two buckets: small and
large text based on observations made from the distribution
of the heights.

Larger text tends to be well reconstructed across all
methods, whereas fine textual details are often missed, es-

pecially in the early stages of training. When comparing
STRinGS with 3DGS (Tab. 6), the scores are very close
for large text, but there is a substantial gap for small text,
which directly drives the overall difference in OCR-CER.
At 7K iterations, this gap is particularly large. For example,
on the Chemicals scene, the difference in small-text CER
between 3DGS and STRinGS is 0.579, while the difference
for large text is 0.593. On the Globe scene, the small-text
difference is 0.680, compared to 0.748 for large text. This
shows that at 7K iterations, the gains from both small-text
and large-text is significant. By 30K iterations, the gains for
large-text become smaller, but STRinGS still maintains an
advantage in small-text. On the Chemicals scene, the small-
text CER differs by 0.117 between the two methods, while
the large-text CER differs by only 0.009. This consistent
trend across scenes shows that large text is generally easy
to reconstruct for all methods, while small text remains the
main challenge and the primary source of improvement for
STRinGS.

D.3. Runtime breakdown

In Tab. 7, we provide a detailed runtime breakdown at the
scene level, separating preprocessing and training compo-
nents. Preprocessing includes both COLMAP reconstruc-
tion and text segmentation. Since existing methods report
runtime only for the training stage and exclude COLMAP
preprocessing, we likewise do not count the text segmenta-
tion step toward runtime, as it is a one-time preprocessing
step independent of the reconstruction pipeline itself. As
expected, the runtime of COLMAP varies significantly with
the number of input images and their resolution. While Hi-
SAM text segmentation adds a small, parallelizable cost per
image, its execution can be scaled according to available
compute resources. The table also contains the time break-
down of the two phases of our pipeline. The selective text
reconstruction in Phase 1 is highly efficient, accelerating
the emergence of fine textual details to yield high-fidelity
scenes early in the training process.

D.4. Qualitative Results

Fig. 11 and Fig. 12 (7K iterations) demonstrate the ability
of our method to reconstruct semantically meaningful text
early in the optimization process, while Fig. 13 and Fig. 14
(30K iterations) shows further improvements, particularly
in challenging text regions where sharper and more accurate
reconstruction is achieved.

D.5. Quantitative Results

We report the overall quantitative performance aggregated
across all scenes in each dataset in Tab. 8 and Tab. 4,
which present consolidated metrics for all methods at 7K
and 30K training iterations, including PSNR, SSIM, LPIPS,
and the number of Gaussians. These results reflect the gen-



Figure 10. Qualitative comparisons of different methods at 7K training iterations on Scene 127 from the DL3DV-10K Benchmark [18]
dataset with Chinese characters, showing the robustness of our method towards different languages.

Scene Number of characters

OCR-CER (7K) OCR-CER (30K)

(STRinGS-360) Method
Small text Large text Total Small text Large text Total Small text Large text Total
Shelf 11110 4352 15462 3DF}S 0.843 0.575 0.765  0.125 0.075  0.107
STRinGS  0.148 0.074  0.118  0.115 0.063  0.096
Books 5380 1371 8753 3D.GS 0.457 0.171  0.343  0.080 0.053  0.060
STRinGS  0.087 0.062  0.072  0.057 0.044  0.047
D Vi 4 . 127 .032 .
Extinguisher 3404 1105 4509 3 F}S 0.790 04300696 0 0.03 0.095
STRinGS  0.144 0.034  0.109  0.081 0.026  0.060
Chemicals 9120 2371 11491 SDQS 0.990 0.676 0923  0.294 0.059  0.239
STRinGS 0411 0.083 0337  0.177 0.050  0.144
D . . . 2 .14 2
Globe 19018 5056 24074 3 QS 0.957 0939 0953 0.270 0.143  0.238
STRinGS  0.277 0.191  0.251  0.210 0.114  0.182

Table 6. OCR-CER comparison between 3DGS and STRinGS at 7K and 30K iterations, stratified by text size. Each scene lists the number
of characters (divided into small, large, and total). Text is divided into the same categories for evaluation, and OCR-CER is reported

separately for these bins as well as for the overall scene.

eral reconstruction quality of the scene. Across these stan-
dard image-based metrics, our method performs competi-
tively with existing approaches. In some cases, we observe
slightly lower PSNR, SSIM, or LPIPS scores, which we at-
tribute to our deliberate emphasis on accurate text recon-
struction, at the expense of background regions that typi-
cally dominate these global averages. This trade-off is es-
pecially relevant in scenes where semantically important
text occupies only a small portion of the image and does
not significantly influence metrics that are averaged across
the entire scene. Notably, our method achieves this while

maintaining a relatively low number of Gaussians compared
to other methods, especially in text-rich scenes like in our
STRinGS-360 dataset, highlighting its efficiency.

We complement these results with detailed per-scene
evaluations. Tab. 9 presents OCR-based Character Error
Rate (CER), Tab. 10 presents training time, Tab. 11 presents
PSNR, Tab. 12 presents SSIM, Tab. 13 presents LPIPS, and
Tab. 14 presents the number of Gaussians.



Dataset Scene Preprocessing Training
Hi-SAM
COLMAP (perimage) Phasel Phase2  Total
Tanks and Train 6.3 m 35s 0.3m 7.7m 8.0 m
Temples Truck 4.0m 245 02m 110m 112m
Avg 5.1m 29s 0.2m 94 m 9.6 m
Scene 3 23.5m 39s 09m 122m 13.1m
Scene 21 26.7 m 2.8s 0.5m 11.3m 11.8m
Scene 80 17.7m 34s 0.7 m 8.5m 9.2 m
DL3DV-10K Scene 92 18.2 m 2.8s 0.6 m 127m 133 m
Benchmark — gcene 107 248 m 3.8s 12m  136m 14.8m
Scene 132 9.5m 3.0s 0.5m 7.6 m 8.1 m
Scene 136 20.0 m 3.8s 0.6 m 8.9 m 95m
Avg 20.0 m 33s 0.7m 107m 114 m
Shelf 33m 39s 1.0m 180m 19.0m
Books 2.5m 39s 0.7 m 129m 13.6m
STRinGS-360 Extinguisher 2.1m 2.8s 0.4 m 104m 10.8m
(Ours) Chemicals 2.6m 39s 05m 92m 97m
Globe 4.1 m 4.1s 0.7 m 9.3 m 10.0 m
Avg 29m 3.7s 0.7 m 119m 12.6m

Table 7. Scene-level runtime breakdown for preprocessing and training components for STRinGS pipeline. The Total column corresponds
to training time only (consistent with Tab. 2 at 30K iterations). Preprocessing includes COLMAP and Hi-SAM inference time per image,
which is treated separately from training time. Time taken by COLMAP depends on the number of input images and their resolution
and hence varies significantly across scenes. HI-SAM can be parallelized across compute. Note that the Hi-SAM model roughly takes 3
seconds to load which is not included in the values above.

Method Tanks&Temples DL3DV-10K Benchmark STRinGS-360 (Ours)

PSNRT SSIM{ LPIPS] Points)] PSNRT SSIM{ LPIPS| Points) PSNR{ SSIM{ LPIPS| Points)
3DGS siGGrAPH23 21.88  0.7873 0.2556  1217K 2734  0.8980 0.1974 974K 25.71 0.8508 0.3048  1004K
Mip-Splatting cver 24 21.90 0.7945 0.2472 1617K 27.33  0.9002 0.1903  1226K 25774  0.8513 0.3018 1314K
3DGS-MCMC newres24 21.55  0.7565  0.2934  1550K 2649  0.8782  0.2221 1182K 2356  0.7907 0.3829  1388K
AbsGS acvimvras 21.64 0.7701  0.2725 1235K 26.82  0.8880  0.2090 963K 2526 0.8356 0.3260 1283K
EDC-AbsGS urxivos 2236 0.8202 02148 1142K 2799 09171 0.1682 780K 27.64 0.8936 0.2434 981K
STRinGS (Ours) 21.14  0.7756  0.2740 879K 27.02  0.9005 0.1981 790K 26.65 0.8841 0.2703 790K

Table 8.  Comparison of reconstruction quality and number of Gaussians (Points) at 7K iterations across three datasets:

Tanks&Temples [17], DL3DV-10K Benchmark [18], and STRinGS-360.
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Figure 11. Qualitative comparisons of different methods at 7K training iterations on scenes from our STRinGS-360 dataset.
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Figure 12. Qualitative comparisons of different methods at 7K training iterations on scenes from the DL3DV-10K Benchmark [18] dataset.
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Figure 13. Qualitative comparisons of different methods at 30K training iterations on scenes from our STRinGS-360 dataset.
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Figure 14. Qualitative comparisons of different methods at 30K training iterations on scenes from the DL3DV-10K Benchmark [18] and
Tanks&Temples [17] datasets.



3DGS Mip-Splatting 3DGS-MCMC AbsGS EDC-AbsGS STRinGS (Ours)

OCR-CER | Scene
7K 30K 7K 30K 7K 30K 7K 30K 7K 30K 7K 30K

Tanksang 1D 0.282 0.161 0304 0.174 0322 0.52 0327 0.192 0.190 0.170 0.143  0.128
Temples  Truck 0.136 0080 0.140 0.076 0221 0.088 0.171 0.082 0.094 0.066 0.100  0.070
Avg 0209 0.121 0222 0.125 0272 0.20 0249 0.137 0.142 0.118 0.122  0.099
Scene3 0403 0.142 0411 0.124 0640 0.128 0439 0.138 0226 0.149 0220  0.124

Scene 21 0475 0.178 0382 0.152 0.531 0.160 0.481 0.186 0.271 0.184 0.190 0.136
Scene 80 0474 0.170 0.500 0.180 0.608 0.134 0.517 0.194 0.293 0.204 0.162  0.099
DL3DV-10K  Scene 92 0416 0.093 0.471 0.096 0.604 0.100 0.476 0.099 0.179 0.103 0.144  0.090
Benchmark  gcene 107 0.587 0.223 0.600 0.221 0.718 0.195 0.602 0.232 0.386 0.211 0.271 0.175
Scene 132 0.240 0.172 0.231 0.171 0.263 0.174 0.219 0.159 0.202 0.181 0.208 0.153
Scene 136 0.151 0.122 0.151 0.102 0.216 0.100 0.160 0.108 0.119 0.105 0.113 0.085

Avg 0.392 0.157 0392 0.149 0.511 0.142 0411 0.160 0.239 0.162 0.187  0.123
Shelf 0.765 0.107 0.752  0.095 0.990 0.096 0.810 0.108 0.262 0.097 0.118  0.096
Books 0.343 0.060 0.348 0.051 0.749 0.054 0.380 0.066 0.073 0.054 0.072  0.047

STRinGS-360 Extinguisher 0.696 0.095 0.748 0.069 0.900 0.067 0.738 0.094 0.207 0.082 0.109  0.060
(Ours) Chemicals 0923 0.239 0.934 0.226 0999 0.154 0.945 0.209 0.626 0.157 0.337 0.144
Globe 0.953 0.238 0.960 0.204 0.998 0.177 0.968 0.240 0.469 0.190 0.251 0.182

Avg 0.736 0.148 0.748 0.129 0.927 0.110 0.768 0.143 0.328 0.116 0.177  0.106

Table 9. OCR-CER (J) comparison across scenes and methods at 7K / 30K iterations.

3DGS Mip-Splatting  3DGS-MCMC AbsGS EDC-AbsGS  STRinGS (Ours)

Training time | Scene
7K 30K 7K 30K 7K 30K 7K 30K 7K 30K 7K 30K

Tanks and Train 1.6 m 112m 28m 168m 3.0m 158m 24m 114m 26m 11.5m 1.0m 8.0 m
Temples  Truck 25m 164m 39m 248m 32m 235m 29m 140m 3.0m 139m 12m 112m
Avg 20m 138m 34m 208m 3.1m 196m 26m 127m 28m 127m l.1lm 9.6 m

Scene 3 32m 20.7m 6.7m 367m 6.0m 36.0m 55m 223m 54m 213m 24m 13.1m

Scene 21 28m 155m 63m 325m 48m 26.7m 54m 23.Im 80m 27.0m 1.8m 11.8m

DL3DV-10K Scene 80 22m 10.6m 52m 225m 42m 209m 46m 176 m 50m 19.0m 19m 92 m
Benchr;lark Scene 92 30m 172m 70m 350m 58m 31.6m 55m 21.7m 59m 230m 2.1m 133 m

Scene 107 36m 20Ilm 70m 337m 66m 347m 58m 22.1m 60m 22.Im 32m 14.8m
Scene 132 22m 95m 64m 260m 44m 232m 54m 194m 6.1lm 22.0m 1.6 m 8.1m
Scene 136 24m 119m 58m 268m 48m 249m 50m 190m 55m 212m 1.8m 9.5m

Avg 28m 151m 63m 304m 52m 283m 53m 207m 60m 222m 2.01m 114m
Shelf 32m 2325m 6.6m 402m 52m 392m 62m 268m 59m 253m 29m 190m
Books 27m 180m S5.6m 312m 56m 397m 52m 21.1m 52m 212m 20m 13.6m

STRinGS-360 Extinguisher 2.7m 17.5m 6.0m 32.6m 48m 322m 58m 238m 56m 245m 14m 10.8m
(Ours) Chemicals 20m 148m 53m 283m 55m 28.6m 49m 202m 55m 228m 1.5m 9.7m
Globe 19m 123m 49m 261lm 68m 302m 48m 204m 52m 222m 19m 10.0m

Avg 25m 172m S57m 31.7m 56m 340m 54m 225m 55m 232m 19m 12.6m

Table 10. Training time (J.) (on RTX 3090 Ti) comparison across scenes and methods at 7K / 30K iterations.



3DGS Mip-Splatting 3DGS-MCMC AbsGS EDC-AbsGS STRinGS (Ours)
7K 30K 7K 30K 7K 30K 7K 30K 7K 30K 7K 30K

PSNR 1 Scene

Tanksang 1D 1975 2197 1958 2192 1937 | 2261 19.15 21.61 [20.03 21.67 19.16 2232
Temples  Truck 2400 2549 2423 2570 2373 2625 24.13 2567 2468 2578 23.12 2544
Avg 21.88 23.73 2190 23.81 21.55 | 2443 2164 2364 2236 2373 21.14  23.88
Scene3 2901 3335 29.03 3361 2692 3352 27.94 3328 3044 33.56 2931  33.02

Scene 21 25.08 26.87 2523 27.35 25.74 27.87 2534 2740 25.64 2775 24.03 2692
Scene 80 29.51 3192 29.85 3235 28.86 3145 2936 3192 29.76 32.06 28.46  31.80
DL3DV-10K  Scene 92 23.66 26.10 2341 25.86 22.78 2636 2299 26.05 2397 26.19 23.03  25.93
Benchmark  gcene 107 28.08 33.20 2798 33.82 26.10 33.58 26.73 33.26 29.67 33.42 29.54  33.37
Scene 132 29.30 31.24 29.43 31.46 2854 31.15 2890 31.05 21.53 31.27 28.55 31.09
Scene 136 26.72 28.74 26.40 28.82 26.46 29.28 2640 28.32 26.90 28.94 2622  28.82

Avg 27.34 3020 2733 3047 2649 3046 2682 30.18 27.99 3045 27.02  30.14
Shelf 24.66 29.55 2444 29.02 2143 29.74 2358 29.26 27.02 29.85 27.18  29.57
Books 25.68 28.82 2575 28.79 23.64 2930 24.73 28.71 27.69 29.15 26.41 28.50

STRinGS-360 Extinguisher 28.61 30.66 28.38 30.49 27.00 31.95 2848 30.77 29.92 3121 29.03  30.80
(Ours) Chemicals  24.85 28.52 25.19 28.86 22.80 29.95 24.74 28.65 27.55 2932 25.68  28.82
Globe 2477 2671 24.93 26.84 2294 2832 2476 2644 26.02 2699 2496  27.28

Avg 2571 28.85 2574 28.80 23.56 29.85 2526 28.77 27.64 2930 26.65 29.00

Table 11. PSNR (1) comparison across scenes and methods at 7K / 30K iterations.

3DGS Mip-Splatting ~ 3DGS-MCMC AbsGS EDC-AbsGS  STRinGS (Ours)
7K 30K 7K 30K 7K 30K 7K 30K 7K 30K 7K 30K

SSIM 1 Scene

Tanksang 1D 07211 0.8199 0.7256 0.8264 0.6845 |0.8404 0.6887 0.8179 [0.7659 0.8289 0.7147 0.8201
f‘é’m;f; Truck 0.8536 0.8850 0.8634 0.8927 0.8286 0.8972 0.8516 0.8874 0.8746 0.8900 0.8365 0.8825
Avg 07873 0.8524 0.7945 0.8596 0.7565 0.7688 0.7701 0.8526 0.8202 0.8595 0.7756 0.8513
Scene 3 09144 09595 09138 | 0.9620 0.8742 0.9619 0.8964 0.9600 0.9404 09618 09287 0.9578

Scene 21 0.8204 0.8613 0.8321 0.8750 0.8204 0.8797 0.8280 0.8705 0.8518 0.8826 0.8035 0.8584
Scene 80 0.9387 0.9570 0.9423 0.9605 0.9311 0.9564 0.9372 0.9579 0.9479 0.9595 0.9353 0.9566
DL3DV-10K  Scene 92 0.8584 0.9083 0.8560 0.9107 0.8304 0.9134 0.8376 0.9075 0.8769 0.9125 0.8556 0.9064
Benchmark  gcene 107 0.8950 0.9587 0.8956 0.9626 0.8600 0.9642 0.8707 0.9600 0.9292 0.9619 0.9279 0.9602
Scene 132 0.9295 0.9476 0.9308 0.9495 09134 0.9449 0.9223 0.9661 0.9357 0.9484 0.9238 0.9464
Scene 136 0.9298 0.9509 0.9308 0.9529 0.9182 0.9527 0.9236 0.9502 0.9381 0.9532 0.9286 0.9507

Avg 0.8980 0.9348 0.9002 0.9390 0.8782 0.9390 0.8880 0.9360 0.9171 0.9400 0.9005 0.9338
Shelf 0.8305 0.9276 0.8307 0.9258 0.7349 0.9324 0.8058 0.9263 0.8918 0.9323 0.8916 0.9268
Books 0.8815 0.9289 0.8806 0.9301 0.8287 0.9362 0.8617 0.9283 0.9180 0.9333 0.9031 0.9266

STRinGS-360 Extinguisher 0.8673 0.9050 0.8664 0.9064 0.8177 0.9193 0.8602 0.9024 0.8976 0.9134 0.8784 0.9073
(Ours) Chemicals  0.8527 0.9089 0.8556 0.9118 0.7983 0.9187 0.8414 0.9078 0.8951 0.9134 0.8793 0.9100
Globe 0.8218 0.8925 0.8232 0.8969 0.7738 0.9106 0.8089 0.8905 0.8655 0.8991 0.8681 0.8982

Avg 0.8508 09126 0.8513 0.9142 0.7907 0.9234 0.8356 0.9111 0.8936 0.9183 0.8841 0.9138

Table 12. SSIM (1)) comparison across scenes and methods at 7K / 30K iterations.
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3DGS Mip-Splatting ~ 3DGS-MCMC AbsGS EDC-AbsGS  STRinGS (Ours)

LPIPS | Scene
7K 30K 7K 30K 7K 30K 7K 30K 7K 30K 7K 30K

Tanksang T 03164 0.1961 03144 0.1892 03624 0.1844 03536 0.1916 02667 0.1816 0.3306 0.2032
%:mspf‘e“s Truck 0.1948 0.1422 0.1800 0.1234 02244 0.1171 0.1913 0.1316 0.1628 0.1299 02174 0.1502
Avg 02556 0.1692 02472 0.1563 0.2934 0.1508 0.2725 0.1616 0.2148 0.1557 02740 0.1767

Scene 3 0.1453 0.0843 0.1432 0.0768 0.1928 0.0804 0.1720 0.0786 0.1088 0.0776 0.1307 0.0882
Scene 21 0.2506 0.2002 0.2326 0.1779 0.2483 0.1775 0.2297 0.1817 0.2078 0.1688 0.2753 0.2044
Scene 80 0.1898 0.1576 0.1732 0.1378 0.1984 0.1582 0.1812 0.1431 0.1664 0.1398 0.1976 0.1585
DL3DV-10K  Scene 92 0.2201 0.1517 0.2198 0.1438 0.2577 0.1498 0.2556 0.1495 0.1966 0.1435 0.2280 0.1556
Benchmark  Scene 107 0.1926 0.1070 0.1934 0.0961 0.2310 |0.0901 0.2274 0.0982 0.1475 0.0958 0.1568 0.1032
Scene 132 0.1903 0.1576 0.1869 0.1514 0.2220 0.1691 0.2014 0.1572 0.1786 0.1546 0.2005 0.1609
Scene 136 0.1933 0.1608 0.1832 0.1463 0.2045 0.1509 0.1954 0.1495 0.1718 0.1446 0.1974 0.1630

Avg 0.1974 0.1456 0.1903 0.1329 0.2221 0.1394 0.2090 0.1368 ' 0.1682 0.1321 0.1981 0.1477
Shelf 0.2783 0.1508 0.2746 0.1433 0.3959 0.1408 0.3223 0.1451 0.1998 0.1404 0.2102 0.1567
Books 0.2271 0.1556 0.2217 0.1450 0.2893 0.1417 0.2481 0.1471 0.1774 0.1456 0.2138 0.1666

STRinGS-360 Extiguisher 0.2733 0.2075 0.2647 0.1897 0.3474 0.1928 0.2725 0.1957 0.2199 0.1864 0.2739 0.2166
(Ours) Chemicals 0.3723 0.2727 0.3708 0.2666 0.4454 0.2652 0.3960 0.2653 0.3074 0.2638 0.3400 0.2800
Globe 0.3730 0.2668 0.3773 0.2614 0.4363 0.2451 0.3912 0.2688 0.3122 0.2600 0.3137 0.2630

Avg 0.3048 0.2107 0.3018 0.2012 0.3829 0.1971 0.3260 0.2044 0.2434 0.1992 0.2703 0.2166

Table 13. LPIPS () comparison across scenes and methods at 7K / 30K iterations.

Number of 3DGS Mip-Splatting ~ 3DGS-MCMC AbsGS EDC-AbsGS  STRinGS (Ours)
Gaussians | Scene

7K 30K 7K 30K 7K 30K 7K 30K 7K 30K 7K 30K

Tk ang TR 741K 1093K 883K 1481K 1100K 1100K 836K 949K 843K 1064K 554K 893K

;‘gm;f; Truck 1693K 2059K 2351K 3250K 2000K 2000K 1634K 1646K 1440K 1700K 1204K 1816K

Ave 1217K  1576K 1617K 2366K 1550K 1550K 1235K [1297K 1142K 1382K | 879K 1354K

Scene 3 1509K 1872K 1804K 2407K 1900K 1900K 1470K 1198K | 881K 923K 991K  1109K

Scene 21 1308K 1509K 1973K 2431K 1500K 1500K 1486K 1474K 1522K 1743K 1029K 1349K

Scene 80 622K 664K 764K 891K 665K 665K 566K 517K 553K 585K 633K 658K

DL3DV-10K  Scene 92 1082K 1393K 1322K 1968K 1400K 1400K 1022K 992K 857K 995K 878K 1177K
Benchmark  gcene 107 1314K  1682K 1472K 2026K 1700K 1700K 1272K 1085K 830K 849K 1170K 1187K
Scene 132 368K 398K 489K 607K 400K 400K 318K 291K 298K 326K 317K 357K

Scene 136 618K 710K 757K 936K 710K 710K 609K = 563K 524K 579K 518K 587K

Avg 974K 1175K 1226K 1610K 1182K 1182K 963K 874K 780K 857K 790K 918K
Shelf 1448K 2079K 1904K 2829K 2080K 2080K 1942K 1903K 1399K 1403K 1192K 1434K
Books 916K 1231K 1086K 1526K 1230K 1230K 940K 818K = 602K 617K 634K 721K

STRinGS-360 Extinguisher 1397K 1616K 2028K 2413K 1610K 1610K 1700K 1564K 1336K 1434K 903K 1137K
(Ours) Chemicals 564K 1007K 657K 1233K 1000K 1000K 831K 924K 748K 754K 464K 608K
Globe 694K 1021K 893K 1373K 1020K 1020K 1002K 990K 818K 1000K 759K 925K

Avg 1004K 1391K 1314K 1875K 1388K 1388K 1283K 1240K 981K 1041K 790K 965K

Table 14. Number of Gaussians () comparison across scenes and methods at 7K / 30K iterations.
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